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BACKGROUND: Improvements in computing
power can claim a large share of the credit for
many of the things that we take for granted
in our modern lives: cellphones that are more
powerful than room-sized computers from
25 years ago, internet access for nearly half
the world, and drug discoveries enabled by
powerful supercomputers. Society has come
to rely on computers whose performance in-
creases exponentially over time.
Much of the improvement in computer per-

formance comes from decades of miniatur-
ization of computer components, a trend that
was foreseen by the Nobel Prize–winning phys-
icist Richard Feynman in his 1959 address,
“There’s Plenty of Room at the Bottom,” to
the American Physical Society. In 1975, Intel
founder Gordon Moore predicted the regu-
larity of this miniaturization trend, now called
Moore’s law, which, until recently, doubled the
number of transistors on computer chips every
2 years.
Unfortunately, semiconductorminiaturiza-

tion is running out of steam as a viable way
to grow computer performance—there isn’t
much more room at the “Bottom.” If growth

in computing power stalls, practically all in-
dustries will face challenges to their produc-
tivity. Nevertheless, opportunities for growth
in computing performance will still be avail-
able, especially at the “Top” of the computing-
technology stack: software, algorithms, and
hardware architecture.

ADVANCES: Software can be made more effi-
cient by performance engineering: restructur-
ing software to make it run faster. Performance
engineering can remove inefficiencies in pro-
grams, known as software bloat, arising from
traditional software-development strategies
that aim to minimize an application’s devel-
opment time rather than the time it takes to
run. Performance engineering can also tailor
software to the hardware on which it runs,
for example, to take advantage of parallel pro-
cessors and vector units.
Algorithms offer more-efficient ways to solve

problems. Indeed, since the late 1970s, the time
to solve the maximum-flow problem improved
nearly as much from algorithmic advances
as from hardware speedups. But progress on
a given algorithmic problem occurs unevenly

and sporadically and must ultimately face di-
minishing returns. As such, we see the big-
gest benefits coming from algorithms for new
problem domains (e.g., machine learning) and
from developing new theoretical machine
models that better reflect emerging hardware.

Hardwarearchitectures
can be streamlined—for
instance, through proces-
sor simplification, where
a complex processing core
is replaced with a simpler
core that requires fewer

transistors. The freed-up transistor budget can
then be redeployed in otherways—for example,
by increasing the number of processor cores
running in parallel, which can lead to large
efficiency gains for problems that can exploit
parallelism. Another form of streamlining is
domain specialization, where hardware is cus-
tomized for a particular application domain.
This type of specialization jettisons processor
functionality that is not needed for the domain.
It can also allow more customization to the
specific characteristics of the domain, for in-
stance, by decreasing floating-point precision
for machine-learning applications.
In the post-Moore era, performance im-

provements from software, algorithms, and
hardware architecture will increasingly re-
quire concurrent changes across other levels
of the stack. These changes will be easier to im-
plement, from engineering-management and
economic points of view, if they occur within
big system components: reusable softwarewith
typically more than a million lines of code or
hardware of comparable complexity. When a
single organization or company controls a big
component, modularity can be more easily re-
engineered to obtain performance gains. More-
over, costs and benefits can be pooled so that
important but costly changes in one part of
the big component can be justified by benefits
elsewhere in the same component.

OUTLOOK: Asminiaturizationwanes, the silicon-
fabrication improvements at the Bottom will
no longer provide the predictable, broad-based
gains in computer performance that society has
enjoyed for more than 50 years. Software per-
formance engineering, development of algo-
rithms, and hardware streamlining at the
Top can continue to make computer applica-
tions faster in the post-Moore era. Unlike the
historical gains at the Bottom, however, gains
at the Top will be opportunistic, uneven, and
sporadic. Moreover, they will be subject to
diminishing returns as specific computations
become better explored.▪
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Performance gains after Moore’s law ends. In the post-Moore era, improvements in computing power will
increasingly come from technologies at the “Top” of the computing stack, not from those at the “Bottom”,
reversing the historical trend.C
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There’s plenty of room at the Top: What will drive
computer performance after Moore’s law?
Charles E. Leiserson1, Neil C. Thompson1,2*, Joel S. Emer1,3, Bradley C. Kuszmaul1†,
Butler W. Lampson1,4, Daniel Sanchez1, Tao B. Schardl1

The miniaturization of semiconductor transistors has driven the growth in computer performance for
more than 50 years. As miniaturization approaches its limits, bringing an end to Moore’s law,
performance gains will need to come from software, algorithms, and hardware. We refer to these
technologies as the “Top” of the computing stack to distinguish them from the traditional technologies
at the “Bottom”: semiconductor physics and silicon-fabrication technology. In the post-Moore era, the
Top will provide substantial performance gains, but these gains will be opportunistic, uneven, and
sporadic, and they will suffer from the law of diminishing returns. Big system components offer a
promising context for tackling the challenges of working at the Top.

O
ver the past 50 years, the miniaturiza-
tion of semiconductor devices has been
at the heart of improvements in com-
puter performance, as was foreseen by
physicist Richard Feynman in his 1959

address (1) to the American Physical Society,
“There’s Plenty of Room at the Bottom.” Intel
founder Gordon Moore (2) observed a steady
rate of miniaturization and predicted (3) that
the number of transistors per computer chip
would double every 2 years—a cadence, called
Moore’s law, that has held up considerably
well until recently. Moreover, until about 2004,
new transistors were not only smaller, they
were also faster and more energy efficient (4),
providing computers with ever more speed
and storage capacity. Moore’s law has driven
economic progress ubiquitously.
Unfortunately, Feynman’s “room at the bot-

tom” is no longer plentiful. The International
Technology Roadmap for Semiconductors [(5),
p. 36] foresees an end to miniaturization, and
Intel [(6), p. 14], a leader in microprocessor
technology, has acknowledged an end to the
Moore cadence. Indeed, Intel produced its
14-nm technology in 2014, but it stalled on
producing its 10-nm technology, due in 2016,
until 2019 (7). Although other manufacturers
continued to miniaturize—for example, with
the Samsung Exynos 9825 (8) and the Apple
A13 Bionic (9)—they also failed to meet the
Moore cadence. There isn’t muchmore room
at the bottom.
Why is miniaturization stalling? It’s stalling

because of fundamental physical limits—the

physics of materials changes at atomic levels—
and because of the economics of chip manu-
facturing. Although semiconductor technology
may be able to produce transistors as small
as 2 nm (20 Å), as a practical matter, min-
iaturization may end around 5 nm because of
diminishing returns (10). And even if semi-
conductor technologists can push things a little
further, the cost of doing so rises precipitously
as we approach atomic scales (11, 12).
In this review, we discuss alternative ave-

nues for growth in computer performance after
Moore’s law ends. We believe that opportuni-
ties can be found in the higher levels of the
computing-technology stack, which we refer
to as the “Top.” Correspondingly, by “Bottom”
we mean the semiconductor technology that
improved so dramatically during the Moore
era. The layers of the computing stack harness
the transistors and other semiconductor de-
vices at the Bottom into useful computation at
the Top to solve real-world problems. We di-
vide the Top into three layers: (i) hardware
architecture—programmable digital circuits
that perform calculations; (ii) software—code
that instructs the digital circuits what to com-
pute; and (iii) algorithms—efficient problem-
solving routines that organize a computation.
We contend that even if device technologies at
the Bottom cease to deliver performance gains,
the Top will continue to offer opportunities.
Unlike Moore’s law, which has driven up

performance predictably by “lifting all boats,”
working at the Top to obtain performance will
yield opportunistic, uneven, and sporadic gains,
typically improving just one aspect of a par-
ticular computation at a time. For any given
problem, the gains will suffer from the law of
diminishing returns. In the long run, gains
will depend on applying computing to new
problems, as has been happening since the
dawn of digital computers.

Working at the Top to obtain performance
also differs from the Bottom in how it affects
a computing system overall. The performance
provided by miniaturization has not required
substantial changes at the upper levels of the
computing stack, because the logical behavior
of the digital hardware, software, and data in
a computation is almost entirely independent
of the size of the transistors at the Bottom. As
a result, the upper levels can take advantage
of smaller and faster transistors with little or
no change. By contrast—and unfortunately—
many parts of the Top are dependent on each
other, and thus when one part is restructured to
improve performance, other parts must often
adapt to exploit, or even tolerate, the changes.
When these changes percolate through a sys-
tem, it can take considerable human effort to
correctly implement and test them, which in-
creases both costs and risks. Historically, the
strategies at the Top for improving perform-
ance coexisted with Moore’s law and were
used to accelerate particular applications that
needed more than the automatic performance
gains that Moore’s law could provide.
Here, we argue that there is plenty of room

at the Top, and we outline promising opportu-
nities within each of the three domains of soft-
ware, algorithms, and hardware. We explore
the scale of improvements available in these
areas through examples and data analyses.We
also discuss why “big system components”will
provide a fertile ground for capturing these
gains at the Top.

Software

Software development in the Moore era has
generally focused on minimizing the time it
takes to develop an application, rather than
the time it takes to run that application once it
is deployed. This strategy has led to enormous
inefficiencies in programs, often called soft-
ware bloat. In addition, much existing software
fails to take advantage of architectural fea-
tures of chips, such as parallel processors and
vector units. In the post-Moore era, software
performance engineering—restructuring soft-
ware to make it run faster—can help applica-
tions run more quickly by removing bloat and
by tailoring software to specific features of the
hardware architecture.
To illustrate the potential gains from per-

formance engineering, consider the simple
problem of multiplying two 4096-by-4096
matrices. Let us start with an implementation
coded in Python, a popular high-level program-
ming language. Here is the four-line kernel of
the Python 2 code for matrix-multiplication:
for i in xrange(4096):
for j in xrange(4096):

for k in xrange(4096):
C[i][j] += A[i][k] * B[k][j]

The code uses three nested loops and fol-
lows the method taught in basic linear-algebra
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classes. It turns out, however, that this naïve
code leaves much of the performance available
on modern computers “on the table.” The code
takes about 7 hours on a modern computer to
compute the matrix product, as shown by
the first row (version 1) in Table 1, achieving
only 0.0006% of the peak performance of the
machine. (Incidentally, Python 3 requires about
9 hours for the same computation.)
How can this naïve matrix-multiplication

code be performance engineered? Simply choos-
ing a more efficient programming language
speeds up this calculation dramatically. For
example, coding it in Java (version 2) produces
a speedupof 10.8×, and coding it in C (version 3)
produces an additional speedup of 4.4×, yield-
ing an execution time that is 47 times faster
than the original Python. This performance
improvement comes from reducing thenumber
of operations the program performs. In partic-
ular, Java and C avoid the extraneous work
that Python does under the hood to make
programming easier. The price for this per-
formance gain is programmer productivity:
Coding in C is more onerous than coding in
Python, and Java lies somewhere in between.
Although switching languages gains a speed-

up of almost 50×, tailoring the matrix code to
exploit specific features of the hardware makes
it run an additional 1300 times faster. This gain
comes from parallelizing the code to run on all
18 of the processing cores (version 4), exploiting
the processor’s memory hierarchy (version 5),
vectorizing the code (version 6), and using
Intel’s special Advanced Vector Extensions
(AVX) instructions (version 7). The final op-
timized code performs the task in only 0.41 s—
more than 60,000 times faster than the 7 hours
of the original Python code!
The point of this example is to illustrate the

potential gains available from performance
engineering naïvely coded software. In the par-
ticular case of matrix multiplication, a good
programmer could avoid this programming
effort by using optimized code from existing

software libraries. If she were writing code to
solve a new problem, however, shewould need
to optimize the code herself. And although not
every application can improve by nearly five
orders of magnitude through performance
engineering, most modern software systems
contain ample opportunity for performance
enhancement, especially if the codebase is
large enough.
During the post-Moore era, it will become

ever more important to make code run fast
and, in particular, to tailor it to the hardware
on which it runs. Modern computers provide
architectural features designed to make code
run fast. For example, versions 4 and 6 exploit
parallelism, which is the ability of computers
to perform multiple operations at the same
time. Version 5 exploits locality, which is the
computer’s ability to access data elements ef-
ficiently when they are collocated in memory
(spatial locality) or have been accessed re-
cently (temporal locality). Version 7 exploits
both parallelism and locality through care-
fully coordinated use of Intel’s AVX instructions.
As we shall see in the Hardware architecture
section, architectures are likely to become in-
creasingly heterogeneous, incorporating both
general-purpose and special-purpose circuitry.
To improve performance, programs will need
to expose more parallelism and locality for the
hardware to exploit. In addition, software per-
formance engineers will need to collaborate
with hardware architects so that new pro-
cessors present simple and compelling ab-
stractions that make it as easy as possible to
exploit the hardware.
Beyond the tailoring of software to hard-

ware is the question of bloat: Where does
software bloat come from? Certainly, some
bloat comes from trading off efficiency for
other desirable traits, such as coding ease, as
versions 1 to 3 of the matrix-multiplication
code illustrate. Bloat also comes from a failure
to tailor code to the underlying architecture,
as versions 4 to 7 show. But much software

bloat arises from software-development strat-
egies (13, 14), such as reduction.
The idea of reduction is this. Imagine that

you are a programmer who has been given a
problem A to solve (for example, distinguish-
ing between a yes or no spoken response).
You could write specialized code to solve A
directly, but instead, you might notice that
a related problem B has already been solved
(existing speech-recognition software that
understands many words, including yes and
no). It will take you far less effort to solve A
by converting it into a problem that can be
solved with the existing code for B, that is, by
reducing A to B.
Inefficiencies can arise both from the re-

duction itself (translating A to B) and from
the generality of B (the solution to B is not
tailored specifically to A). But the largest bloat
arises from the compounding of reductions:
reducing A to B, B to C, C to D, and so on.
Even if each reduction achieves an impressive
80% efficiency, a sequence of two independent
reductions achieves just 80% × 80% = 64%.
Compounding 20 more times yields an effi-
ciency of less than 1%, or 100× in bloat.
Because of the accumulated bloat created by

years of reductionist design during the Moore
era, there are great opportunities to make pro-
grams run faster. Unfortunately, directly solving
problem A using specialized software requires
expertise both in the domain of A and in per-
formance engineering, which makes the pro-
cess more costly and risky than simply using
reductions. The resulting specialized software
to solve A is often more complex than the soft-
ware that reduces A to B. For example, the fully
optimized code in Table 1 (version 7) is more
than 20 times longer than the source code for
the original Python version (version 1).
Indeed, simple code tends to be slow, and

fast code tends to be complicated. To create a
world where it is easy to write fast code, appli-
cation programmersmust be equipped with the
knowledge and skills to performance-engineer
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Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive
refinement of the original Python code. “Running time” is the running time of the version. “GFLOPS” is the billions of 64-bit floating-point operations per
second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,
is time relative to the preceding line. “Fraction of peak” is GFLOPS relative to the computer’s peak 835 GFLOPS. See Methods for more details.

Version Implementation Running time (s) GFLOPS Absolute speedup Relative speedup
Fraction

of peak (%)

1 Python 25,552.48 0.005 1 — 0.00
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

2 Java 2,372.68 0.058 11 10.8 0.01
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

3 C 542.67 0.253 47 4.4 0.03
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

4 Parallel loops 69.80 1.969 366 7.8 0.24
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

5 Parallel divide and conquer 3.80 36.180 6,727 18.4 4.33
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

6 plus vectorization 1.10 124.914 23,224 3.5 14.96
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

7 plus AVX intrinsics 0.41 337.812 62,806 2.7 40.45
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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their code, and productivity tools to assist must
be improved considerably.
Abstractly, software performance engineer-

ing can be viewed as a simple process involv-
ing a single loop: (i) Measure the performance
of programA. (ii) Make a change to programA
to produce a hopefully faster program A′. (iii)
Measure the performance of programA′. (iv) If
A′ beats A, set A = A′. (v) If A is still not fast
enough, go to (ii). But today, our systems are
sufficiently complicated that measurements
must often be repeatedmany times to develop
confidence that one version of a program
outperforms another.
As hardware becomes increasingly special-

ized and heterogeneous (see the Hardware ar-
chitecture section), high-performing code will
become even more difficult to write. Because
faster software will be increasingly important
for better performance in the post-Moore era,
however, the computing industry, researchers,
and government should all bewellmotivated to
develop performance-engineering technologies.

Algorithms

Algorithmic advances have alreadymademany
contributions to performance growth and will
continue to do so in the future. A major goal
is to solve a problem with less computational
work. For example, by using Strassen’s algo-
rithm (15) formatrix multiplication, the highly
optimized code in version 7 of Table 1 can be
improved by about 10%. For some problems,

the gains can be much more impressive: The
President’s Council of Advisors on Science
and Technology concluded in 2010 that “per-
formance gains due to improvements in algo-
rithms have vastly exceeded even the dramatic
performance gains due to increased processor
speed” (emphasis theirs) [(16), p. 71].
Because algorithm design requires human

ingenuity, however, it is hard to anticipate ad-
vances. To illustrate the nature of algorithmic
progress, consider the classical operations-
research problem of finding the maximum
flow in a network [(17), chap. 26], which can
be used to model the movement of traffic in
a road network, blood through the circula-
tory system, or electricity in a circuit. Linear
programming is a straightforward way to solve
the maximum-flow problem, but the 20 years
between 1975 and 1995 saw a sequence of
algorithmic innovations that greatly improved
on it.
Figure 1 shows the progress in maximum-

flow algorithms over time. The performance
gain of the best algorithm has rivaled the gain
due to Moore’s law over the 38 years of the
data (just over four orders ofmagnitude versus
just under five), even though no new algo-
rithm has improved the performance of this
particular problem over the past 20 years. This
example highlights three salient observations
about algorithms: (i) Progress on a given al-
gorithmic problem occurs unevenly and spo-
radically. (ii) The benefits from algorithmic

innovation can rival gains fromMoore’s law.
(iii) The algorithmic improvements in solving
any given problem must eventually diminish.
Because this example focuses on awell-known

problem, however, it misses a key aspect of
how algorithmic performance engineering can
speed up computing: by providing efficient
solutions to new problems. For example, more
than a quarter of the 146 papers at the 2016
Association for Computing Machinery (ACM)
Symposium on Discrete Algorithms focus on
problems that had not previously been studied
algorithmically. Consequently, although re-
search on old problemsmay still yieldmarginal
gains, much of the progress in algorithms will
come from three sources: (i) attacking new
problem domains, (ii) addressing scalability
concerns, and (iii) tailoring algorithms to take
advantage of modern hardware. We discuss
each source in turn.
New problem domains continually create

a need for new algorithms. Domains such as
machine learning, social networks, security,
robotics, game theory, sensor networks, and
video codingwere tiny or nonexistent 30 years
ago but are now economically important enough
to demand efficient algorithms. Many compa-
nies have gained a competitive advantage thanks
to algorithms. Google’s PageRank algorithm
(18) made its WorldWideWeb search superior,
and the auction algorithms of Google AdWords
(19), which allow advertisers to bid for display
space based on users’ search terms, made it
highly profitable. Content-delivery networks,
which delivered more than half of internet
traffic in 2016 (20), depend on efficient algo-
rithms to avoid congestion. Many sciences
also depend on good algorithms. For exam-
ple,DNA sequencing in computational biology
depends on efficient dynamic-programming
algorithms (21).
Moore’s law has enabled today’s high-end

computers to store over a terabyte of data in
main memory, and because problem sizes
have grown correspondingly, efficient algo-
rithms are needed to make solutions afford-
able. Sublinear algorithms (22, 23) provide one
example of how to address problems of scale.
For instance, to find the median of a trillion
numbers, it takes at least a trillion memory
operations just to read the input data. But
many problems do not need the exact median
and work perfectly well with only a good es-
timate of the median. For these problems, we
can instead extract a random sample of, say,
a million numbers and compute the median
of that sample. The result is a highly accu-
rate estimate of the true median that can be
computed a million times faster. The field of
algorithms is full of strategies for dealing
with scalability.
Tailoring an algorithm to exploit modern

hardware can make it much faster (Table 1).
Nevertheless, most algorithms today are still
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Fig. 1. Major algorithmic advances in solving the maximum-flow problem on a graph with n = 1012

vertices and m = n1.1 edges. The vertical axis shows how many problems (normalized to the year 1978) could
theoretically be solved in a fixed time on the best microprocessor system available in that year. Each major algorithm
is shown as a circle in the year of its invention, except the first, which was the best algorithm in 1978. The dotted
trajectory shows how faster computers [as measured by SPECint scores in Stanford’s CPU database (56)] make
each algorithm faster over time. The solid black line shows the best algorithm using the best computer at any point in
time. Each algorithm’s performance is measured by its asymptotic complexity, as described in the Methods.
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designed using the serial random-access ma-
chine model (24) originally developed in the
1960s and 1970s, which assumes that a pro-
cessor can do only one operation at a time
and that the cost to access any part of the
memory is the same. Such algorithms often
use modern hardware inefficiently because
they underutilize themachine’smany parallel-
processing cores and vector units, each of
which can performmany operations per clock
cycle, and they fail to exploit caching, which
can speed up data accesses by two orders of
magnitude.
Although algorithms research has devel-

opedmathematical models for salient features
of modern computers, such as parallel and
vector processing (25–32) and cache hierar-
chies (33–35), a substantial gap between al-
gorithm and implementation remains. Part
of the problem is that each model tends to
address just one aspect—such as parallelism,
vector units, or caching—and yet tailoring an
algorithm to a modern computer requires an
understanding of all of them. Moreover, in
an effort to gain every bit of performance, some
hardware features—such as simultaneous mul-
tithreading, dynamic voltage and frequency
scaling, direct-mapped caches, and various
special-purpose instructions—actually make
it more difficult to tailor algorithms to hard-
ware, because they cause variability and un-
predictability that simple theoretical models
cannot easily capture.
One possible solution is autotuning (36, 37),

which searches a parametrized space of pos-
sible implementations to find the fastest
one. With modern machine learning, it may
even be possible to include implementations
that differ by more than the values of a few
parameters. Unfortunately, autotuning and
machine learning tend to be too time con-
suming to ask that every algorithm incur this
large up-front cost. Furthermore, these ap-
proaches actuallymakealgorithmdesignharder,
because the designer cannot easily understand
the ramifications of a design choice. In the post-
Moore era, it will be essential for algorithm
designers and hardware architects to work
together to find simple abstractions that de-
signers can understand and that architects
can implement efficiently.

Hardware architecture

Historically, computer architects used more
and more transistors to make serial computa-
tions run faster, vastly increasing the com-
plexity of processing cores, even though gains
in performance suffered from diminishing
returns over time (38). We argue that in the
post-Moore era, architects will need to adopt
the opposite strategy and focus on hardware
streamlining: implementing hardware func-
tions using fewer transistors and less sili-
con area.

As we shall see, the primary advantage of
hardware streamlining comes from provid-
ing additional chip area for more circuitry
to operate in parallel. Thus, the greatest ben-
efit accrues to applications that have ample
parallelism. Indeed, the performance of hard-
ware for applications without much parallel-
ism has already stagnated. But there is plenty
of parallelism in many emerging application
domains, such as machine learning, graphics,
video and image processing, sensory comput-
ing, and signal processing. Computer architects
should be able to design streamlined archi-
tectures to provide increasing performance for
these and other domains for many years after
Moore’s law ends.
We can use historical data to observe the

trend of architectural reliance on parallel-
ism. Figure 2 plots three sets of benchmark
data for microprocessors: SPECint performance
(black squares and gray diamonds), SPECint-
rate performance (black, orange, blue, and
red squares), and microprocessor clock fre-
quency (green dots). As the green dots in the
figure show, clock speed increased by a fac-
tor of more than 200 from 1985 to 2005, when
it plateaued owing to the end of Dennard
scaling, which we shall discuss shortly. Driven
by increasing clock speed and other architec-

tural changes during the Dennard-scaling era,
microprocessor performance rapidly improved,
as measured by the SPECint and SPECint-
rate benchmarks (black squares), which aim
to model computer performance on typical
user workloads (39). The SPECint benchmark
consists of mostly serial code, whereas the
SPECint-rate benchmark is parallel. The two
benchmarks perform the same on single-
processor computers. But after 2004, as ma-
chines added multiple cores and other forms
of explicit parallelism, the two diverge. In-
deed, the performance of parallel applications
on the best-performing chips in each year
(colored squares) grew by a factor of 30 from
2004 to 2015, improving on average by about
a factor of two every 2 years. By contrast, over
the same time period, the largely serial SPECint
benchmark (gray diamonds) scaled up by only
a factor of three.
Besides parallelism, an application needs

locality to benefit from streamlining. As an ex-
ample, when data are transferred from external
dynamic random access memory (DRAM)
memory chips to a processing chip, it should
be usedmultiple times before being transferred
back. For an application with little locality,
increasing parallelism causes traffic to off-
chip memory to increase proportionally and
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Fig. 2. SPECint (largely serial) performance, SPECint-rate (parallel) performance, and clock-frequency
scaling for microprocessors from 1985 to 2015, normalized to the Intel 80386 DX microprocessor in
1985. Microprocessors and their clock frequencies were obtained from the Stanford CPU database (56).
Microprocessor performance is measured in terms of scaled performance scores on the SPECint and
SPECint-rate performance benchmarks obtained from (39). (See Methods for details.) Black squares identify
single-core processors, for which SPECint and SPECint-rate benchmark performances are the same.
Orange, blue, and red squares plot the SPECint-rate benchmark performance of various multicore processors,
where orange squares identify processors with two to three cores, blue squares identify processors with four
to seven cores, and red squares identify processors with eight or more cores. The gray diamonds plot the
SPECint benchmark performance on multicore processors. The round green dots plot processor clock frequencies
(also normalized to the Intel 80386). The gray background highlights the Dennard-scaling era (nominally up
to 2004), and the white background highlights the multicore era (beyond 2004).
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eventually exceeds the bandwidth of its chan-
nel to memory, so that the application is
memory bound. For an application with good
locality, however, as parallelism increases, the
amount of off-chip memory traffic increases
much more slowly, enabling all the chip’s com-
puting engines to do useful work without
idling. Fortunately, many important applica-
tion domains contain plenty of both locality
and parallelism.
Hardware streamlining can exploit locality

in other ways, especially for domain-specific
processors, which we shall discuss shortly.
For example, explicit data orchestration (40)
exploits locality to increase the efficiency with
which data are moved throughout the mem-
ory hierarchy [(41), chap. 4]. On-chip inter-
connects can become simpler and consume
less power and area if the application using
them contains locality. For example, systolic
arrays (42) can perform matrix computa-
tions more efficiently using an area-efficient
mesh interconnect than a general-purpose
interconnect.
Although hardware will increase in capabil-

ity because of streamlining, we do not think
that average clock speed will increase after
Moore’s law ends, and it may in fact diminish
slightly. Figure 2 shows that clock speed pla-
teaued in 2005, when microprocessor design
became power constrained. Before 2004, com-
puter architects found ways to increase clock
frequency without hitting hard power limits.
Dennard scaling—reducing voltage as clock
frequency increased—allowed processors to
run faster without increasing power usage.
(In practice, processor manufacturers often
increased clock frequency without reducing
voltage proportionally, which did increase
chip power.) Since 2004, however, Moore’s
law has provided many more transistors per
chip, but because the ability to power them
has not grown appreciably (43), architects
have been forced to innovate just to prevent
clock rates from falling. Slightly lower clock
frequency and supply voltage reduce the
power per transistor enough that substan-
tially more circuitry can run in parallel. If the
workload has enough parallelism, the added
computing more than compensates for the
slower clock. Serial applications may see some-
what worse performance, but cleverness can
reduce this cost. For example, Intel’s “Turbo”
mode [(41), p. 28], runs the clock faster when
fewer cores are active. (Other techniques to
reduce transistor switching include usingmore
transistors in caches, power-gating unused cir-
cuitry, and minimizing signal switching.)
Now that designers have embraced paral-

lelism, the main question will be how to
streamline processors to exploit application
parallelism. We expect two strategies to domi-
nate: processor simplification and domain
specialization.

Processor simplification (44) replaces a
complex processing core with a simpler core
that requires fewer transistors. A modern
core contains many expensive mechanisms
tomake serial instruction streams run faster,
such as speculative execution [(41), section
3.6], where the hardware guesses and pur-
sues future paths of code execution, aborting
and reexecuting if the guess is wrong. If a
core can be simplified to occupy, say, half as
many transistors, then twice as many cores
can fit on the chip. For this trade-off to be
worthwhile, the workloadmust have enough
parallelism that the additional cores are kept
busy, and the two simplified cores must do
more useful computing than the single com-
plex one.
Domain specialization (11, 43, 45) may be

even more important than simplification.
Hardware that is customized for an appli-
cation domain can bemuchmore streamlined
and use many fewer transistors, enabling ap-
plications to run tens to hundreds of times
faster (46). Perhaps the best example today is
the graphics-processing unit (GPU) [(41), sec-
tion 4.4], which containsmany parallel “lanes”
with streamlined processors specialized to
computer graphics. GPUs deliver much more
performance on graphics computations, even
though their clocks are slower, because they
can exploit much more parallelism. GPU logic
integrated into laptop microprocessors grew
from 15 to 25% of chip area in 2010 to more
than 40% by 2017 (see Methods), which shows
the importance of GPU accelerators. Moreover,
according to the Top 500 website, which tracks
high-performance computing technology, only
about 10% of supercomputers that were added
to the Top 500 list in the year 2012 contained
accelerators (often GPUs), but by 2017, that
share had grown to 38% (12). Hennessy and
Patterson (45) foresee a move from general-
purpose toward domain-specific architectures
that run small compute-intensive kernels of
larger systems for tasks such as object recogni-
tion or speech understanding. The key require-
ment is that the most expensive computations
in the application domain have plenty of par-
allelism and locality.
A specialized processor is often first imple-

mented as an attached device to a general-
purpose processor. But the forces that encourage
specialization must be balanced with the forces
that demand broadening: expanding the func-
tionality of the specialized processor to make
it more autonomous from the general-purpose
processor and more widely useful to other
application domains (47).
The evolution of GPUs demonstrates this

trade-off. GPUs were originally developed spe-
cifically for rendering graphics, and as a result,
GPUs are next to useless for many other com-
putational tasks, such as compiling computer
programs or running an operating system. But

GPUshave nevertheless broadened to be handy
for a variety of nongraphical tasks, such as lin-
ear algebra. Consider the matrix-multiplication
problem from the Software section. AnAdvanced
Micro Devices (AMD) FirePro S9150 GPU (48)
can produce the result in only 70 ms, which
is 5.4 times faster than the optimized code
(version 7) and awhopping 360,000 times faster
than the original Python code (version 1).
As another example of the trade-off be-

tween broadening and specialization, GPUs
were crucial to the “deep-learning” revolution
(49), because they were capable of training
large neural networks that general-purpose
processors could not train (50, 51) fast enough.
But specialization has also succeeded. Google
has developed a tensor-processing unit (TPU)
(52) specifically designed for deep learning,
embracing special-purpose processing and
eschewing the broader functionality of GPUs.
During theMoore era, specialization usually

yielded to broadening, because the return on
investment for developing a special-purpose
device had to be amortized by sales over the
limited time before Moore’s law produced a
general-purpose processor that performs just
as well. In the post-Moore era, however, we
expect to see more special-purpose devices,
because they will not have comparably per-
forming general-purpose processors right
around the corner to compete with. We also
expect a diversity of hardware accelerators
specialized for different application domains,
as well as hybrid specialization, where a single
device is tailored for more than one domain,
such as both image processing and machine
learning for self-driving vehicles (53). Cloud
computing will encourage this diversity by ag-
gregating demand across users (12).

Big components

In the post-Moore era, performance engineer-
ing, development of algorithms, and hardware
streamlining will be most effective within big
system components (54). A big component is
reusable software with typically more than a
million lines of code, hardware of compara-
ble complexity, or a similarly large software-
hardware hybrid. This section discusses the
technical and economic reasons why big com-
ponents are a fertile ground for obtaining
performance at the Top.
Changes to a system can proceed without

much coordination among engineers, as long
as the changes do not interfere with one an-
other. Breaking code into modules and hid-
ing its implementation behind an interface
make development faster and software more
robust (55). Modularity aids performance en-
gineering, because it means that code within
a module can be improved without requir-
ing the rest of the system to adapt. Likewise,
modularity aids in hardware streamlining,
because the hardware can be restructured
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without affecting application programming
interfaces (APIs). Performance engineering
and hardware streamlining that do not re-
quire coordination already occur this way,
and we expect them to continue to do so.
Many of the most valuable future opportu-

nities for improving performance will not
arise locally within a single module, however,
but from broad-based and systematic changes
across many modules affecting major parts of
a system. For example, because so much soft-
ware is reductionist, the larger a system, the
greater the opportunity for huge performance
gains when layer upon layer of reductions are
replaced by a lean and direct implementa-
tion. But large-scale reengineering that affects
many modules requires the coordination of
many engineers, which is costly and risky.
Big system components (web browsers, data-

base systems, operating systems, micropro-
cessors, GPUs, compilers, disk-storage systems,
and so on) offer both technical opportunities
for making applications run fast and a con-
text where it is economically viable to take ad-
vantage of them. As an example of the types of
changes that can be made within a big compo-
nent, consider amicroprocessor. An instruction-
set architecture (ISA) is the interface by which
software tells the processor what to do. Man-
ufacturers routinely makemajor internal changes
to improve performance without changing
the ISA so that old software continues to run
correctly. For example, the Intel 8086 released
in 1978 had 29,000 transistors (56), whereas
the 22-core Xeon E5-2699 v4, released in 2016,
has about 248,000 times more transistors (57)
that produce more than a million times better
performance, according to SPECint rate (39).
In that time, the ISA has grown by less than
a factor of four (58), and old programs con-
tinue to work even as the interface adds new
functionality.
Big components provide good opportunities

for obtaining performance, but opportunity
alone is not enough. To outweigh the costs
and risks of making changes, an economic
incentive must exist. If a commercial enter-
prise or a nonprofit organization owns a big
component, it can justify the investment to
enhance performance because it reaps the
benefit when the job is done. Single owner-
ship also helps with coordination costs. If
many parties must agree to make a change,
but it takes only a few to veto it, then it can
be hard for change to happen. Even the fear
of high coordination costs can block change
in a large codebase if too many parties are
involved. But when a single entity owns a big
component, it has the power to make vast
changes and pool the costs and benefits. It
can choose to reengineer as many modules
as it can justify economically and coordinate
with the outside world only at the big com-
ponent’s interface.

Conclusions
Asminiaturizationwanes, the silicon-fabrication
improvements at the Bottom will no longer
provide the predictable, broad-based gains in
computer performance that society has enjoyed
formore than 50 years. Performance-engineering
of software, development of algorithms, and
hardware streamlining at the Top can con-
tinue tomake computer applications faster in
the post-Moore era, rivaling the gains accrued
over many years by Moore’s law. Unlike the
historical gains at the Bottom, however, the
gains at the Top will be opportunistic, uneven,
sporadic, and subject to diminishing returns
as problems become better explored. But
even where opportunities exist, it may be
hard to exploit them if the necessary mod-
ifications to a component require compatibil-
ity with other components. Big components
can allow their owners to capture the eco-
nomic advantages from performance gains at
the Topwhileminimizing external disruptions.
In addition to the potential at the Top, nas-

cent technologies—such as 3D stacking, quan-
tum computing, photonics, superconducting
circuits, neuromorphic computing, and graphene
chips—might provide a boost from theBottom.
At the moment, these technologies are in their
infancy and lack the maturity to compete with
today’s silicon-based semiconductor technol-
ogy in the near future (59). Although we ap-
plaud investment in these technologies at the
Bottom because of their long-term potential,
we view it as farmore likely that, at least in the
near term, performance gains for most appli-
cations will originate at the Top.

Methods
Table 1

Each running time is theminimumof five runs
on an Amazon AWS c4.8xlarge spot instance,
a dual-socket Intel Xeon E5-2666 v3 system
with a total of 60 gibibytes of memory. Each
Xeon is a 2.9-GHz 18-core CPU with a shared
25-mebibyte L3-cache. Each processor core
has a 32–kibibyte (KiB) private L1-data-cache
and a 256-KiB private L2-cache. The machine
was running Fedora 22, using version 4.0.4 of
the Linux kernel. The Python version was exe-
cuted using Python 2.7.9. The Java version was
compiled and run using OpenJDK version
1.8.0_51. All other versions were compiled using
GNU Compiler Collection (GCC) 5.2.1 20150826.

Figure 1

Each curvemodelshowhardware improvements
grow the performance of a fixed maximum-
flow algorithm, starting from the year the al-
gorithm was published. The performance of
each algorithm was measured as the number
of graphs of n = 1012 vertices,m = n1.1 ~ 15.8 ×
1012 edges, and 64-bit integer capacities that
can be solved in a fixed amount of time, nor-
malized such that the first point starts at 1. We

calculated the performance of each algorithm
based on its asymptotic complexity in terms of
big-O notation, assuming that the constant
hidden by the big-O is 1. We excluded approx-
imate algorithms from consideration, because
these algorithms do not necessarily return the
same qualitative answer. We also excluded algo-
rithmswhose stated asymptotic bounds ignore
logarithmic factors to simplify the performance
comparisons. We identified four maximum-
flow algorithms developed since 1978 that
each delivered a performance improvement of
more than a factor of four over its predecessor:
EdmondsandKarp’sO(m2logU) algorithm (60);
Sleator and Tarjan’sO(mnlogn) algorithm (61);
Ahuja, Orlin, and Tarjan’sOðmnlogðn ffiffiffiffiffiffiffiffiffiffiffi

logU
p

=
mþ 2ÞÞ algorithm (62); and Goldberg and
Rao’s O(n2/3mlog(n2/m)logU) algorithm (63).
Each curve plots the best performance achieved
by any processor up to that date, on the basis
of scaled MIPS (million instructions per sec-
ond) estimates and SPECint scores recorded in
Stanford’s CPU database (56). These processor
performance measurements are normalized
using the same method as in Fig. 2.
Figure 1 ignores the constant factors in the

performance of maximum-flow algorithms
because comparably engineered implemen-
tations of these algorithms are not available.
Nevertheless, the effects from changes in con-
stant factors between algorithms can be in-
ferred from the plot. For example, if a constant
factor were 10 times larger between one al-
gorithm and a later one, then the curve for
the later algorithm would be one order of
magnitude lower (i.e., one division less on
the y axis).

Figure 2

Performance measurements for different pro-
cessors were gathered from Stanford’s CPU data-
base (56). For a processor released before 1992,
its performance is measured as the recorded
estimate of how many MIPS that processor can
perform. For subsequent processors, each per-
formance measurement corresponds to the
best recorded score for that processor on either
the SPECint1992, SPECint1995, SPECint2000,
or SPECint2006 benchmarks. Performance for
multicore processors is measured using both
standard SPECint scores (gray diamonds) and
in terms of throughput (multicolored squares),
using SPECint2006 rate scores. All SPECint
performance scores were obtained from (39).
The date for an Intel processor released after
2004 is plotted as the first day in the quarter
when that processor was released, unless a
more precise release date was found. Scores
for different SPECint benchmarks were nor-
malized by scaling factors, which were com-
puted from the geometric-mean ratios of scores
for consecutive versions of SPECint for pro-
cessors that were evaluated on both versions.
The MIPS estimates were normalized with
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the SPECint scores such that a score of 1 on
SPECint1992 corresponds to 1 MIPS.

GPU logic integrated into laptop
microprocessors

We obtained, from WikiChip (57), annotated
die photos for Intel microprocessors with
GPUs integrated on die, which began in 2010
with Sandy Bridge. We measured the area in
each annotated photo dedicated to a GPU and
calculated the ratio of this area to the total area
of the chip. Intel’s quad-core chips had approx-
imately the following percentage devoted to
the GPU: Sandy Bridge (18%), Ivy Bridge (33%),
Haswell (32%), Skylake (40 to 60%, depending
on version), Kaby Lake (37%), and Coffee Lake
(36%). Annotated die photos for Intel micro-
architectures newer than Coffee Lakewere not
available and therefore not included in the
study. We did not find enough information
about modern AMD processors to include
them in this study.
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stack, where improvements in software, algorithms, and hardware architecture can bring the much-needed boost.

 review recent examples and argue that the most promising place to look is at the top of the computinget al.Leiserson 
cannot get much smaller than they are today, and other approaches should be explored to keep performance growing.
Moore's law, has contributed immensely to improvements in computer performance. However, silicon-based transistors 

The doubling of the number of transistors on a chip every 2 years, a seemly inevitable trend that has been called
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